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Almtraet--The purpose of this paper is to adapt the methodology of dynamical systems to the study of 
a wide class of mathematical models currently used to solve problems of steady I-D two-phase flows. A 
detailed study of the geometrical features of the ensemble of solutions is then used for two purposes. First, 
it makes it possible to understand the physical characteristics of such flows without the need to produce 
complete solutions. Secondly, the methodology gives valuable indications as to how to supplement 
computer codes which become inadequate in the neighborhood of singular points. This leads to avoidable 
numerical difficulties and incorrect interpretations. This methodology is particularly useful in the study 
of the phenomena of cooking. 

The important contribution of this general analysis is to show that, regardless of the number of 
equations in the model, the generic solutions involve only three types of singular points: saddle points, 
spirals or nodes. 

By way of example, the method is applied to the mathematically simplest case, the homogeneous flow 
model with adiabatic boundary conditions. The channel consists of a convergent portion with transition 
to a divergent portion through a smooth throat. The divergent portion possesses an inflection point after 
which the rate of area divergence decreases. The fluid is a mixture of water and steam in thermodynamic 
equilibrium. The expected saddle point, located just downstream from the throat, is followed by an 
unexpected spiral. The phase space consisting of pressure P, enthalpy h and spatial coordinate z divides 
itself into four distinct areas. In area A of figure 13 all solutions are single-valued, possess a pressure 
minimum and correspond to physically acceptable subcritical flows. In area B the solutions of the 
differential equations (all possessing a turning point) are irrelevant for the physical problem at hand. 
Through the saddle point there passes a trajectory which is unique in the subcritical portion and continues 
with two branches, one subcritical ending at pressure P', the other supercritical, ending at pressure P". 
Area C between those branches contains states which are not described by the postulated model. It is 
conjectured that flows against a back-pressure, P " <  Pa < P', evidently observed in nature, must 
presumably be described by an extension to the model involving enhanced entropy production. The 
remaining area D contains supercritical state points and is of no present interest. 

1. I N T R O D U C T I O N  

The purpose of this paper is to assert that numerical solutions of problems in two-phase flows to 
be obtained with a computer code should be supplemented with a partially quantitative, but largely 
qualitative analysis of the topological patterns of solutions in phase space ("phase portraits") 
implied in the particular mathematical model employed. Since all 1-D mathematical models of 
steady two-phase flow now in use are of the form extensively explored for the analysis of dynamical 
systems, the engineer interested in solving problems in two-phase flow gains access to a wealth of 
useful mathematical results and techniques (e.g. Poincar6 1880, 1890, 1899; Hale 1969; Gucken- 
beimer & Holmes 1983; Arnold 1973, 1978, 1982; Kaplan 1958; Kestin & Zaremba 1952, 1953, 
1954; Bilicki & Kestin 1983; Perry 1984). 

The method is geometric in nature, and our work demonstrates conclusively that the theory of 
singular points of systems of coupled, ordinary, nonlinear differential equations--still largely 
unexploited in this field--is essential for clarity, for the proper management of computer codes and 
for the understanding of the phenomenon of choking as predicted by the adopted mathematical 
model, an impossible task when only numerical procedures are used. 

The kingpin of the analysis is the identification of the singular points of the basic system of 
equations and of the solution patterns that they imply. Such an analysis serves two purposes. First, 
it gives the analyst the ability to understand the physical characteristics of a class of flows without 
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the need to produce complete solutions. Secondly, it gives valuable indications as to how to 
supplement computer codes because practically all numerical methods of solution become 
inadequate in the neighborhood of the singular points and are constitutionally incapable of locating 
them in the first place, which leads to numerical difficulties and incorrect interpretations. This has 
to do with the fact that the set of algebraic equations, which the computer code must solve at each 
step, becomes either impossible or indeterminate (Delhaye et al. 1981; Bour6 et al. 1976) and no 
longer solves the coupled differential equations of the model. 

The plan of the paper is to identify the mathematical properties of a broad class of models of 
two-phase flows in three appendices and to devote the main text to the formulation of some general, 
physical conclusions supplemented by a detailed analysis of one very simple example. The example 
concerns flow through a convergent-divergent nozzle. 

2. THE BASIC EQUATIONS 

Practically all known mathematical models used for the analysis of steady-state l-D two-phase 
flows of fluids can be brought to the form of the following ordinary differential vector equation:t 

A°(°)  -~zde' = bj(e, z) (i,j = l, 2, . . .  , n). [1] 

Here ~r(z) is a vector of n components of temporally- and spatially-averaged thermodynamic and 
dynamic quantities which is a function of a single independent variable z. Equation [1] represents 
a system of coupled, ordinary, nonlinear differential equations. This system, supplemented with the 
initial conditions 

crj(0) = a, 0 (i = 1, 2 . . . . .  n), [2] 

constitutes an initial-value problem. 
Since the analysis outlined here is topological in nature, the choice of the particular physical 

quantities as components of ~ is secondary and can, therefore, be governed by practical 
considerations of convenience. 

3. THE VELOCITY VECTOR IN THE PHASE SPACE 

With very few exceptions, solutions of this problem must be obtained by the use of numerical 
methods and computer codes. Each solution represents a trajectory e(z) in the phase space [2 of 
n + 1 dimensions which consists of the n components of 6 and of coordinate z. The basic equation 
[1] defines a vector field V(¢, z) in the phase space. Each vector of this field is tangential to the 
corresponding trajectory and its direction is specified by the n angles, 

0c, = t a n -  \ d z  ] [3] 

which it forms with the z-axis in the planes a,, z. We calculate the angles explicitly by application 
of Cramer's rule: 

dj_ 2 = N,(¢, z_____~) = A ~ t b,. [41 
dz A(ff) 

Here 

A(e) --4det (Aq) [5] 

and the N~a, z) are determinants, each obtained from A,j by replacing the ith column by bj. If 
we define the components of the vector V(¢, z) as 

A,N~ . . . .  Am, 

tThroughout the paper, use is made of the Einstein summation convection. When no subscripts are displayed, the 
corresponding boldface symbols denote vectors or tensors. 
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we notice that its directional angles ~I . . . . .  g, are those derived in [3]. Reference to the vector field 
V(o, z) proves to be convenient for numerical calculations and for the qualitative analysis which 
forms the gist of this paper. 

4. THE AUTONOMOUS SYSTEM 

At each point of the trajectory o(z), the vector V can be interpreted as the velocity with which 
a point moves along the trajectory if a parameter t along it is arbitrarily defined. This leads us to 
the autonomous system 

d z  
dt A(er) 

do'~ 
- -  = N,(O, z ) .  
dt 

[6] 

The components of  this vector can be taken as A in the z-direction and N, each in the direction 
of coordinate a;. 

At points of the phase space for which A(~r) = 0 but not all Ni vanish, the vector V is normal 
to the z-axis. At points where A(o) = 0 and all components Ni(er, z) vanish, the direction of V is 
undefined since its magnitude is zero. 

5. COMMON FEATURES OF ALL THE M A T H E M A T I C A L  MODELS 

The majority of the I-D models embodied in [1] regard the system as a single pseudo-fluid in 
which the two phases coexist at every point of the physical continuum or are present as two 
separated phases. The process is governed by the conservation laws which introduce the derivatives 
daddz. Hence the components of the n x n matrix A,j do not contain the space variable z. 
Depending on the model, the number of equations ranges from n = 2 upwards. 

The conservation equations augmented by the equation of state must be supplemented by 
empirical closure conditions which define the covariances arising from averaging. In this paper we 
restrict attention to closure conditions which are #oven in terms of the components o~ to the 
exclusion of  their derivatives. These define the elements of vector bj which now contains er as well 
as z explicitly; its elements also depend on the #oven channel shape described by its area variation 
A(z). 

6. TOPOLOGICAL STRUCTURE OF THE PHASE SPACE 

The phase space f~ is constructed of the n + 1 dimensions which enter [6], i.e. of  z and the n 
components of o. In it, it is necessary to distinguish three classes of points: (a) regular points, 
(b) turning points and (c) singular points. 

6.1. Regular points 
A point (z °, o °) in phase space is called regular if rank [A~j(#°)] = n or, equivalently, if 

A ( ~ )  ~ 0 .  [7] 

On the set of regular points the two systems, [1] and [4], are equivalent. Then the system satisfies 
the requirements of existence and uniqueness. If, and only if, all points along a trajectory satisfy 
[4], a numerical solution constitutes a proper approximation to an analytic solution. The 
initial-value problem has a unique solution in this case. 

A unique mathematical solution to the system [1] does not mx~ssarily r~msen t  a physically 
acceptable solution, as we shall point out where necessary. In this connection it must also be 
remembered that physically valid initial conditions [2] are prescribed at z = 0 and rule out all 
trajectories which do not reach the hypcrplane z = 0. 
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6.2. The hypersurface T(A = 0) 

All points in phase space which satisfy the condition 

~(~)  = 0 [s] 

are either turning points (z *, a*) or singular points (z**, a **). The set of points which satisfy this 
condition lie on a cylindrical hypersurface (manifold Y')  of n dimensions whose generators are 
parallel to the z=axis. The properties of this manifold depend only on the terms of matrix A,: and 
are thus independent of the closure conditions. At all points of Y the rank of A,j is at most n - 1. 

The hypersurface Y" has certain important properties which we now proceed to develop. 
Condition [8] is an implicit equation in the components of a, that is between the velocity or 

velocities (or, equivalently, specific flow rates) included in ¢ and the thermodynamic properties of 
the two phases. In all homogeneous flow models this condition is equivalent to the statement that 
the critical fluid velocity w* is equal to the local speed of sound, 

w* = a = . [91 
s 

In the two-fluid model condition [8] states that the local (critical) barycentric velocity w* is a 
weighted average of the speeds of sound, ao and aL in the two phases, 

. 2  

[10] 
PG. ~PL-]r., 

It follows that the cylindrical hypersurface ,~ divides the phase space f~ into a region f~) where 
A > 0 and all local velocities are subscritical (w < w* or Wb < W*), and into a supercritical region 
f12 where A < 0  (w > w* or Wb > W*). This is suggested by the diagram in figure I which, of 
necessity, is drawn for n = 2. 

In most practical problems) we are interested in flows which start at z = 0 with a relatively low) 
suberitical velocity (points in f~s) whose trajectories progress in the positive z=dircction. Super- 
critical velocities at the inlet are not fundamentally excluded, but occur so rarely that we ignore 
them in this paper. 

It will be shown in another place that the velocities w* or w* which satisfy [8] represent the speed 
of propagation of a plane wave of small amplitude because they correspond to a stationary 
characteristic of the (to be expected) hyperbolic partial differential equation which is a time= 
dependent extension of [I] (Bour8 et al. 1976; Bour6 1977; Trapp & Ransom 1982). This feature 
5nks condition [8] with the occurrence of choking in the channel. 

The preceding relations are independent of column vector b j, i.e. of the closure conditions (source 
terms) and shape of the channel. In cases where body forces due to gravitation play a role, the 
above conclusions remain unaffected by them, because the gravitational acceleration appears only 
in b:. 

It is remarkable that in the presently discussed class of models the speed of propagation of a 
weak plane wave is insensitive to gravity, the shape of the channel and the nature of the source 
terms bj in [I]. 

The distinction between turning points and singular points can be properly understood only in 
terms of a theorem of matrix algebra whose proof is given in Appendix A. 

The condition A --- O defines the hypercylinder ~" and each of the n conditions Ni = 0 defines a 
hypersurface ]:~. We center attention on the manifold ,9 ° of n -  1 dimensions which is the 
intersection of 3" with one hypersurface, say ]2~ (N~--0). We assume that the two hypersurfaces 
intersect transversely and state the criterion for this to be so in Appendix B. The theorem in 
question asserts that all Ni ffi O on ,7 ~ ,  and this implies that all remaining hypersurfaces g~ must 
necessarily intersect ,~" at ~ .  

This situation is illustrated with the aid of  figure 2. 
The points (z*,¢*) which belong to ,~" but not to ~ are called turning points. The points 

(z**, e**) which belong to ~ as well as to Y are called singular points. 
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Figure 1. Phase space Q and hypersurface ..~r(A = 0). Figure 2. Definition o f  manifold ~ as the intersection 
between A = 0 and all N ,  = O. 

6.3. Turning points 
A trajectory which passes through a turning point must have there a maximum or a minimum 

in z, or a point of  inflection, because the vector V at such a point is normal to the z-axis and to 
the hypercylinder ~' .  

The diagram in figure 1 shows a trajectory m with a maximum at M on ~ ' .  Since the flow cannot 
change direction in the same channel, such a trajectory can be traversed only along the limb m~ 
in the direction of  V; all its points are then subcritical. The limb m2, whose points are supercritical, 
also represents a possible solution when it is traversed in the direction opposite to V. 

Clearly, state M cannot exist inside a channel but may occur at its end. Thus all trajectories 
whose maxima intersect 5 at z < z* must be ruled out as solutions of our physical problem for 
a channel of  length L = z*. All trajectories which pierce ~" at z > z* represent acceptable solutions 
for such a channel, and it is not difficult to show that the mass flow rate rh is largest along 
trajectories with maximum at z*, and we conclude that trajectories such as ml or m2 represent 
choking at the end of the channel. Here A = 0 is the "criterion of choking". Under such conditions, 
the channel exit blocks the upstream propagation of a pressure drop outside the channel, and its 
flow rate becomes independent of pressure decreases imposed outside the exit. 

A trajectory which possesses a point of inflection on ~ (not shown) is not acceptable physically, 
because at such a point Ida/dzl --, ~ ,  which is ruled out inside a channel, because the components 
of ¢ represent physical quantities, none of which can grow at an infinite rate. Similarly, a trajectory 
which has a minimum on ~" (not shown either) must also be ruled out as a physically valid solution 
because on either branch it would start with a large velocity, proceed in the negative z-direction 
and fail to reach z = 0. 

6.4. Nondegenerate singular points 
The singular points (z**, a**) at which A ---- 0 and all N~ -- 0, for i = 1 . . . . .  n, are precisely the 

equilibrium points (V = 0) of system [6]. A singular point is called nondegenerate if the rank of  the 
matrix Av(a**), which is at most n - 1 on account of A(a**) --- 0, is precisely n - 1. Eschewing 
generality, we limit our discussion to nondegenerate singular points, because degenerate singular 
points represent nongencric situations and are not likely to occur in practical flows. The set of  
nondegenerate singular points has been denoted by SP. 
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The importance of  identifying the location and character of  the singular points of  [6], with an 
eye on numerical calculations, resides in the fact that they do not satisfy the uniqueness theorem. 

The determination of  the topological character of  trajectories in the neighborhood of  a singular 
point appears in its simplest form in the case of  two linear ordinary differential equations with 
constant coefficients (e.g. Coddington & Levinson 1955; Kaplan 1958). The autonomous system 

dxi  
dt  = a l l x l  + at2x2' [l la] 

dx2 
dt = a21x1 + a22x2' [1 lb] 

has a singular point at the origin x~ = x2 = 0 of  the xt, x2 plane. Here 

, : F x ' ] ,  t, J 
L-'C23 La2, a22d 

In this elementary example it is possible to write down the explicit solutions 

xl = cl ~l exp(2! t ) + c2 ~/t exp (22 t ) [13a] 

and 

X2 = Cl ~2 exp(21 t) + C2~ 2 exp(22 t) ,  [13b] 

where cm and c2 are arbitrary constants. The exponential factors 2~ and 22 are the two eigenvalues, 
here assumed distinct, of  the matrix a,s , so that 

all - 2  a12 = 0. [14] 
a2! a22 --/~ 

The eigenvalues satisfy the explicit characteristic equation 

22 --  (art + a22)2 + ( a r i a 2 2  - -  a21 a12) = 0.  [15] 

The vectors ~(~1, ~2) and t/0/t, ~/2) are the eigenvectors which are implied in the equations 

21¢,=./~ij~j ( i , j  = 1,2) [16a] 

and 

22 7, = A,stl,j ( i , j  = 1, 2). [16b] 

The solutions quoted in (1 la, b) admit three types of  topological patterns--(a) saddle points, 
(b) nodes, (c) spirals (foci)--depending on the relationships obtaining between the constants; these 
are illustrated with the aid of  figure 3 which correlates each pattern with the eigenvalues. In 
particular, 

(a) at saddle points, 21 < 0 < 22 

(b) a tnodes ,  2 1 < 2 2 < 0  or 2 1 > 2 2 > 0  

(c) at spirals, 2 L = ~ + i f l ,  2 z = o ~ - i f l ,  

We note for future reference that through 

• a saddle point there pass exactly two trajectories 
• a nodal point there passes an infinity of  trajectories 
• a spiral there pass no trajectories. 

• ,/~ ~0. t 
[17] 

The principal question which arises in conjunction with the more complex system [6] of  n + 1 
nonlinear equations is to discover whether we must expect more complex patterns due to 
nonlinearity and more kinds of  them as the number n + 1 increases beyond 2. The most important 
contribution of  this paper is to demonstrate that this is not  the case. Regardless of  the number n 
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of equations in [1], it is possible to encounter only the above three kinds of nondegenerate singular 
points along any trajectory.t 

More precisely, we shall state later, and prove in Appendices C and D, that the phase portrait 
in the vicinity of a nondegenerate singular point has the same topolgical structure as its linearized 
form. This result follows from an application of the "center manifold theorem", stated in 
Appendix D. 

Since (z**, ¢**) is an equilibrium point of [6], relevant information is provided by its linearized 
form about (z**, ¢**) which reads 

dX~ 
d-T = [183 

where e~p(~t, fl = 0, 1 , . . . ,  n) is the (n + 1) x (n + 1) Jacobian matrix given by 

e~p = 

0 
,"' dA(a**)~a, ] 

,' ONi(z**,¢**) 
I 
I 0 0 "  I 
I 

ON,(z**, ~**) 
dz 

[19a] 

Here X, has the same components as tr,, augmented with z, except that they refer to the coordinates 
centered on the singular points, namely 

Fz-z.. 1 
x ,  = k a , -  [19b] 

We shall show, further, in Appendix C, that matrix e,p possesses n - 1 zero eigenvalues and two 
nonzero eigenvalues 21 # 22 which, generally speaking, have nonvanishing real parts in the 
nondegenerate case. This is a consequence of the fact that matrix e,p operating on any vector in 
the manifold Se of n - 1 dimensions renders it equal to zero. It follows that the arbitrary vector 
is an eigenvector with zero eigenvalue. Consequently, there exist exactly two eigenvectors, 
regardless of the number n of nonlinear equations in [1], which define a plane. Thus, the types of 
singular points to be considered coincide with the elementary ones recalled at the beginning of this 
section and in figure 3. 

The two eigenvalues are to be determined with the aid of the quadratic equation 

The above two eigenvalues produce two eigenvectors, say ~ corresponding to 21 and q correspond- 
ing to 42. The eigenvectors are embedded in [1 and are described by the n + 1 components 
{G0, ~l . . . . .  ~n}and {r/0, r h , . . . ,  r/n} implied in the equations 

and 

21~=e~a~# (~ , f l=0 ,1  . . . .  ,n)  [21a] 

22r/, = e~f/p (or, fl = O, 1 . . . . .  n). [21b] 

The preceding represent two homogeneous systems of equations and their solutions define two 
characteristic directions ~ and # when 21 and 22 are real (saddle point or node). Numerical 
calculations in the neighborhood of a singular point must start with (z**, a**) and include a first 
step along the above directions. Where 2! and 22 are complex conjugate, the singular point is a 
spiral (focus) and no trajectory can pass through it. The two directions [21a, b] together with the 

tMatters can become more complex if cases with rank A~j(z**,a**)<.n - 2  were to be included, but we do not find 
it necessary to do so for reasons explained earlier. 
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Figure 3. Classification of  singular points  p = 21 + ,~2, q = --2122. 

trace A = 0 provide us with a quantitative description of  the trajectories in the neighborhood of  
(z**, er**). The three topological patterns in question are discussed in more detail below. 

6.5. Saddle points 

We recall from [17] that saddle points occur when 

21 < 0 < '~2" [22] 

They are usually encountered just downstream of a throat in a convergent-divergent channel, and 
the two directions ¢ and t I in [21a, b] have opposite signs. 

A saddle point 5" is illustrated with the aid of  figure 4, which is drawn in the plane determined 
by the two eigenvectors ~ and 7. The intersections A = 0 and N1 = 0 with this plane and the singular 
point ~ are also shown. 

It is important to notice that at ~ itself the trajectories cross it with finite slopes, whereas at 
an infinitesimal distance from it, the tangent direction is either parallel or perpendicular to the 
z-axis. This is the reason for the severe difficulties that beset numerical calculations on the 
neighborhood of  such points and for the impossibility of  identifying them by numerical, forward 
integration. 

It is clear from our earlier remarks that not all trajectories of  figure 4 are acceptable as solutions 
of  a physical problem. Referring to figure 5, which we interpret as a projection into the P, z plane, 
we see that the trajectories shown by - -  lines solve a realizable initial-value problem. 

The trajectories shown by ~ lines pass through the saddle point (z**, P**)  and, evidently, 
represent critical flow, i.e. flow choked at z = z**. Starting with P = po at z --0, the trajectory 

/ 

/ P I Np=O 

"..°_ 
. . . .  

. . . . .  J 

- . . - ' 2 - "  

Nl=O z •* z 

Figure 4. Saddle point in plane determined by the Figure 5. Physical interpretation of a saddle point. 
eigenvectors ~ and ~/. 
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progresses subcfitically to the saddle point and then may proceed either with a continuous slope 
7" ending with P" at z ffi L or with a changed slope ~' ending with P" at z ffi L. Here ~' and 7' 
are projections of ~ and 7. 

The line denoted by d represents the locus of the projections of turning points located on A ffi 0, 
and line n represents the locus of the projections of the maxima and minima located on the 
trajectories as they cross Ne ffi 0. Along d we have A -- 0 and along n we have Ne = 0, as indicated. 
It should be noted that the line A- -0  is not parallel to the z-axis, though the generators of 
hypercylinder Y" are, because the turning points on this set do not lie on a generator. 

The trajectories shown by - - -  lines, on the left of the figure, possess turning points and do not, 
therefore, represent acceptable solutions, except for appropriately truncated channels. Only their 
upper branches start with a subcritical velocity. The trajectories shown by - - . - -  lines are physically 
meaningiess.t The trajectories shown by . . . .  lines start in f~2 and fall outside the scope of 
problems of interest in this paper. 

The topological pattern of figure 5 allows us to recognize that flows with initial pressures > po 
end with pressures > P'.  For such flows, the exit conditions are completely determined by the inlet 
conditions. Flows starting with p o may branch out at ~ ,  and the decision as to which branch is 
followed subsequently now depends on the back-pressure P '  or P", respectively. It must be 
recognized that flows with exit pressure P " <  Pe < P" and Pe < P" are not described by our 
mathematical model at all. To include them in the analysis it is necessary to supplement the 
mathematical model with additional physical considerations. In particular, it is clear on physical 
grounds that flows with P~ < P" must expand outside the channel, and that some of the flows with 
P " <  P~ < P" must develop more intense entropy production rates than are implied in bj. These 
may be produced by shock waves or extended zones of enhanced dissipation. 

6.6. Nodal points 

The pattern of a nodal point is shown in figure 6. Such points seem to occur only rarely, and 
we do not find it necessary to provide a detailed discussion, because the interpretation should now 
be clear to the reader by analogy with subsection 6.5. More precisely, the pattern has been drawn 
in the plane determined by ~ and 7, and lines A - 0, N~ = 0, N2 = 0 are lines of intersection of the 
respective manifolds with the plane of the drawing. We merely add as a matter of curiosity that 
such points were identified by Kestin & Zaremba (1954) in the flow of a gas through a tube rotating 
about a vertical axis (helicopter feedline to propeller). 

6.7. Spirals (foci) 

The pattern which accompanies a spiral is drawn in figure 7, which is analogous to figures 4 and 
6. Such points, too, do not appear very frequently. In one case reported by Kestin & Zaremba 
(1953), the spiral point followed a saddle point, as shown in figure 8, and was due to an inflection 
point in the divergent portion of the nozzle profile. Spirals cross the line A = 0 at many points, 
which represent turning points, and the interpretation of this fact is now clear. For example, in 
figure 8 the trajectory shown by lines represents a flow which is choked twice, first inside the 
channel at zr'* and secondly at the end of it, assuming that the channel length is L~. In a channel 
of length L2, the flow cannot choke at z**, but does so at/.2, owing to the effect of the focus at 

Spiral points have also been reported by Kestin & Mikielewicz (1982) in their study of two-phase 
flow down a pipe in a vertical gravitational field (geothermal rejection well). 

7. CONSTANTS OF THE MOTION 

In some models it is possible to integrate one (or more) conservation equation in closed terms. 
This is the case, for example, when steady-state adiabatic flow is analyzed with the aid of the 
homogeneous model. Such an integral leads to the identification of a quantity which remains 
constant along a particular set of trajectories, though not along all of them. In dynamics, this 

tWe  know from gas dynamics that they may acquire some physical significance if shock waves appear, but we do not  
wish to discuss such cases in this paper. 
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Figure 6. Nodal point. 
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Figure 7. Spiral (focus). 

quantity is known as " the constant of the motion".  When this is the case it is possible, and usually 
desirable, to parametrize the problem and to regard the phase space t2 of  n + 1 dimensions as a 
union of  an infinite set of spaces each of n dimensions only, each constituting a set of  trajectories 
characterized by a common value of  the "constant of  the motion".  

The advantage of  this procedure is that now the topological study is conducted in a space of  
lower dimensionality. 

8. L O C A T I O N  OF S I N G U L A R  POINT 

In steady flows, the shape of  the channel always enters the vector bj through the equation of 
mass conservation for the mixture which can be put in the form 

I do I dw dlnA(z) 
+ = [23] 

p dz w dz dz 

Thus the term d lnA(z)/dz appears in one of  the two equations which define a singular point. 
Explicitly, these are 

A(a) = 0 and N f z ,  a ;  d In A(z.) ~ = dz ] o.  [241 
L 

s Np:O 

I 

i 

1 : 

Figure 8. Spiral following a saddle point. 

! ~ ,, - ~ ,  L 1= - 7  

d 
Figure 9. Selee~t nozzle shape, D(z ) ,  and its slope 
dD/dz; Di =0.2m, D 2 -- 0.2m, Dt--0.1 m, z, -- 0.25 m, 

z~-O.42m, L -- 0.8 m, a - 15 °. 
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It follows that the location of the singular point along the channel axis is determined by solving 
for d In A(z ) /d z .  The  pair [24] is a system of two simultaneous algebraic equations each in n + 1 
variables, leaving n - 1 of them undetermined. When n = 2, and the system is parametrizad, we 
obtain a unique value of z** for every value of the parameter. The location of a singular point 
thus turns out to be coordinated with the state •** at it, and is not a general characteristic of the 
shape of the channel. 

9. AN EXAMPLE 

The purpose of this and the following sections is to apply the geometric method to the analysis 
of flow through a channel of varying cross section. The channel shape chosen for the analysis is 
shown in figure 9. For reasons that will be explained later, the nozzle profile has been provided 
with a point of inflection at zi. Thus, the derivative dA/dz passes through zero at z = zt, attains 
a maximum at z = zi and then decreases, passing through zero once more at z < L. 

The choice of the mathematical model for this illustration presented us with some difficulties. 
On the one hand, we are aware of the importance of certain physical phenomena in their effect 
on choking. These include the need to predict the point of flashing if it occurs inside the channel 
(R6ocreux 1974; Saha et al. 1982) and, even more importantly, to account for supersaturation 
(subcooling) in the liquid phase (onset of thermodynamically metastable states). At the present time 
there exist no proven and generally accepted models which account.for such phenomena. Similarly, 
the general question of appropriate closures is also unresolved (Bour6 1986). For these reasons we 
must defer an analysis of a proven mathematical model to a future date. Rather, we opt for the 
simplest homogeneous equilibrium model. This choice is not completely unrealistic, because (Henry 
1981) it has been established that such models seem to be useful when applied to the study of 
choking at comparatively large values of quality, say at void fractions ~ > 0.7 or so. This model 
has, furthermore, been successfully employed on the design of the low-pressure stages of steam 
turbines over many years. 

An additional reason for being satisfied with the simplest, not to say simplistic, model is the 
contention that the description of choking should emerge naturally as a characteristic of the 
mathematical model, and this simple choice will enable us to display the essential features of the 
analysis with a minimum of distraction. 

10. THE MODEL 

We use the term "model" as encompassing the conservation laws, the closure conditions and 
the equation of state of the fluid, here consisting of water and steam for definiteness. We direct 
attention towards the homogeneous, adiabatic equilibrium model which uses the following three 
conservation laws: 

and 

d 
(A pw) = 0; [25a] 

dP dw Cz,,  
d--~ + p W -~z + -~-- = O ; [25b] 

d 
(h + ½ w = O. [25c] 

The symbol z denotes the physical length coordinate measured along the flow axis, 
A ( z )  = 7t[D(z)]2/4 is the variable cross-sectional area of the channel, w is the velocity, p is the 
density, P is the pressure and h is the enthalpy; the shearing stress z~, at the wall is written as 

1 2 
Zw = -~ fpw (f = 0.008 = const) [26] 



522 z. BILICKI et al. 

and the equation of  state of  thermodynamic equilibrium, 

p = p(h, P ) ,  

is fully defined in the Steam Tables (Haar et al., 1984). 

[27] 

11. THE P R O B L E M  

The specific problem is to determine all possible categories of  solutions of  flows when the inlet 
stagnation condition is in the two-phase region and the back-pressure is progressively reduced from 
that at the inlet down to the range where the mass flow rate m has attained its largest value and 
has become insensitive to the back-pressure. 

The particular nozzle, shown in figure 9, has the following dimensions: D~ = 0.2 m at z = 0; 
D2 ffi 0.2 m at z = L = 0.8 m; Dt = 0.1 m at zt = 0.25 m with the slope ~ = 15 ° at the inflection point. 

The profile consists of  two parabolas, one with its minimum at zt, the other with its maximum 
at z < L, both tangential to each other at z = 0.42 m. The variation of  the slope dD/dz  is shown 
underneath the profile. 

Equation [25c] integrates immediately to 

h + ½ w 2 = h0 [25d] 

and allows us to employ the stagnation enthalpy h0 ("constant of  the motion") to parametrize the 
system [25a-c]. Consequently, our model equations acquire the simplified form: 

t 

C, dP  I I C 2 ] d h  2D' 
p dz 2 ( h o - h  ) p dz D ' 

dP dh 4fp  (ho - h ) .  
d---z P dz D ' 

[28a] 

[28b] 

and 
dho 
dz 

Here 

= o.  [28c] 

(") C l =  0, C2 ~'~ P h> = < 0 .  [28d, e] 

The derivatives C~ and C2 retain the given signs over most of  the area of  interest in the two-phase 
portion of  the h, P diagram (Rivkin et al. 1978). 

The preceding system can be described in the 2-D state space h, P with h0 ffi const playing the 
role of  a variable parameter. The model now assumes the canonical form 

do'~ 
A,/(o ) -~z = bj(¢, z ), [29] 

with h and P constituting the components of  the dependent vector ¢. 
The analysis will be conducted in the phase space fl{P, h, z; h0 = const}, where 

• All = -- ,el  AI2 = -- ½(ho - h) -t- --,C2 [30a, b] 
P P 

A21 ----. 1, A22 = - P ,  [30c ,  d]  

- 4 fp  (ho - h) - 2 D '  b2 --  [30e ,  f] 
hi---- D ' D 

Owing to parametrization, we can represent the "portrait" of  the trajectories in a space of  only 
three dimensions. 
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12. SOLUTION 

The solution of the problem consists of the setting up of an algorithm for the calculation of 
pressure and enthalpy distributions along the channel for a given pair of stagnation values, P0 and 
h0, ahead of the inlet (z -- 0). We employ the methodology of sections 2-8 and supplement the 
mathematical discussion with an analysis of the physical acceptability of trajectories and the 
quantitative features of choking. 

The autonomous equivalent of [25a-c] is 
da, dz 
d-T=N. ~tt=A ( i=P,h) ,  [31a, b] 

with t denoting an arbitrary parameter. Here 

and 

A = d e t ( A ~ j ) = - I C , - - ~ ]  + [2(ho - h)]- ' ,  [32a] 

p 2D'p N e = 4 f ( h ° - h ) C 2  2f + - -  [32b] 
D D 

4Clf(ho- h) D'  
Nh= + 2-~-, [32c] 

D L P  

where D' = dD /dz. 
We recall that the quantities A, Np and Nh are interpreted as components of the directional vector 

V which is everywhere tangential to a trajectory m in the phase space, figure 10. This would enable 
us to use the geometric method of isoclines and to sketch the set of trajectories. However, 
nowadays, the preferred method is one of numerical integration. We further recall that through 
all regular points ~r°(h °, P°), where A(h °, P°) # 0, there passes one and only one trajectory which 
solves [25a-c] or [3 la, b] without necessarily constituting an acceptable solution from the physical 
point of view. Any numerical scheme goes through smoothly if all points along a given trajectory 
are regular ones. 

Numerical difficulties appear when A = 0; at such points we either have 

o r  

A = O, Nh ~ O, Ne ~ 0 (turning points {h*, P*; z*}) [33a] 

A =0, Nh = Ne= Ot (singular points {h**, P**; z**}). 

The condition 

A = - [ C t - - ~ ] +  [2(h0-h)]- '  = 0  

proves that at all points of the cylinder T(A -- 0), the flow velocity is 

w.2 = 2(h0_ h) = P 
Cnp +C2'  

which is equivalent to 

[33b] 

[34] 

[35a] 

w.  

Hence it follows that our adopted model implies that at all turning and singular points the local 
flow velocity is equal to the velocity of propagations of small plane disturbances. 

t T h e  case A ffi 0 with only one Nt vanishing is impossible. 
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,2 

Nh Np 

Z2** 

,, 

I Nh=O 

Zl*~ A > 0 

Figure 10. Typical trajectory m in phase space f~ show- 
ing directional vector V and its components A, Np, N h. 

Figure 11. The loci ~K and 3~ 2 of singular points. 

In order to understand the nature of  the numerical difficulties it is useful now to identify the 
singular points. A knowledge of  the location and character of  the singular points permits us at the 
same time to draw the "portrai t"  of  the trajectories in the phase space ~{h, P, z } for each/lo = const 
and to assess the physical acceptability of  the various categories of  trajectories. 

13. S I N G U L A R  POINTS 

The manifold ~ of all singular points satisfies two conditions. In addition to [34], we choose 

This is equivalent to 

4C) f(ho - h) 2D' 
Nh = D + - - f f  = 0. [36a] 

D'  = 2Cl f (h0 -  h) (>0 ) ,  [36b] 

whose r.h.s, is always positive (h0 > h). 
The preceding result proves that critical flow can set in only in the divergent portion of  the nozzle. 

As far as the channel shown in figure 9 is concerned, singular points can occur both downstream 
of  zt, say at Zl**, as well as at z~'* past z,. 

The two singular points must lie on curves ~ and ~2 which result from the intersection of  the 
surface A = 0 with the surface Nh = 0, shown in figure I I. Our numerical studies suggest that the 
loci ~9'~ and ~9~2 are practically at right angles to the z-axis, as indicated in the figure. This proves 
that the locations z** and z** of  the two critical cross sections in the nozzle are insensitive to the 
values of  P** and h** which satisfy A = 0. 

It has been proved previously that trajectories which solve the system [31a, b] can pass only 
through a saddle point or a nodal point. Should any singular point turn out to be a spiral, which 
possesses no real characteristic directions, it will be known that no trajectory can pass through it. 
We shall then be dealing with a straightforward initial-value problem whose numerical solution 
will encounter no obstacles. 

In what follows, we concentrate on saddle points and nodal points. In such cases, a numerical 
procedure must start with the singular point rather than with the inlet. 
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Equations [34] and [36b], taken singly, have proved that the velocity at a critical cross section 
must be sonic and that such a section can occur only in the divergent portion of the channel. Taken 
together, they are insufficient uniquely to determine the relevant velocity vector V(P**, h**, z**). 
First, we need three relations, and secondly we must relate the three parameters to the values P0, 
ho at the upstream stagnation point. The point P0, ho in figure 10 is linked to PI, hi by s = const. 
The pressure P0 does not appear explicitly in the equations, even though h0 is supposedly known. 
It is clear that V** must satisfy [31a, b] and that, consequently, P0 must be computed iteratively 
by reverse integration. 

We begin by assuming a value P**, say p**o), which together with [34] and [36b] specify V **°). 
In practice it is recommended to put p**o) = (0.6 - 0.8)P0. The first step in the reverse integration 
cannot be taken on the basis of [31a, b] for the reasons explained previously. This must progress 
along an eigendirection. The next steps follow [31a, b]. 

The character of the singular point and the eigendirections (for each assumed value p**v)) are 
calculated with the aid of the linearized form 

dXi 
dt = eijXj, [37a] 

where X~ has components 

X I = P - P * * ,  X 2 = h - h * * ,  " t~ir3 r e ' Z - Z * *  [37b] 

and 

e U -~ 

ON** ON** ON** 

Oz Oh OP 

ON** ON** ON** 

Oz Oh OP 

0A** 0A** 0A** 
Oz Oh OP 

[37c] 

Explicit forms of the elements of e u in our case are seen listed in table 1. The character of the 
singular point depends on the eigenvalues of e u, and the characteristic eigendirections follow the 
eigenvectors. The integration is terminated at z = O, and the resulting value P~) is compared with 

Table 1. Elements of the linearized matrix e~j 

OA 

OP 

OA 

Oh 

dA 

Oz 

OP 

OC, C2C1 1 0C2 
OP p2 p OP 

OCt 1 1 / ~C2 2 \ 
= oh 2<ho- h)2 + C2) 

--0 

2D' 4f(ho - h) 0C2 2f 
D Ct + D 0P D Ci 

ON e 2 D ' c  " 4f[-.h h'0C2 C "] 2f 
o- 

ONe = 2p D"D - D '2 
0z D 2 ~ [  4f(h° - h)C2 - 2fp ] 

0Nh 4f(ho - h) OCt 
OP D OP 

ONh 4f FOC, ] 
o-g = ~ L%- <ho- h ) -  C, 

ON h = 4Ctf(ho - h)D' Jr 2 D ' D _ _ -  D '2 
0z D 2 D 2 
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I 
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Figure 12. States in the h, P state plane used in the survey of table 2. 

the given Po, and iterated, if necessary. The iteration ends for IPo- p~z)[ < E, where E is the 
acceptable uncertainty in Po- 

1 4 .  N U M E R I C A L  E X A M P L E S  

We have performed a survey of singular points and characteristic directions for the nozzle 
specified earlier. In all cases, the critical points were located in the wet region, see figure 12. The 
results are listed in table 2. Here, we have imposed values of the stagnation enthalpy, /10, and 
assumed values of the critical pressure P** = P**, looking for the character, and exact location, 

e** 
No.  (MPa)  

Tab le  2. Survey of singular points for the numerical example 
d P  dh 

T y p e  of 
h0 w** z** s ingular  dz** dz** 

(kJ /kg)  x * * (m/s)  (m) point (Pa /m)  ( J /m)  

I 0.06 

2 0.06 
3 0.06 

4 0.06 
5 0.06 

6 0.06 
7 0.20 

8 0.20 
9 0.20 

10 0.20 
11 1,00 

12 1.00 
13 1.00 
14 1.00 
15 4.00 
16 4.00 
17 4.00 

18 4.00 

400 0.0174 29.1 0.25255 Saddle - 169008 - 8 1 7 3  
+ 161073 + 8 0 5 3  

400 - -  - -  0.675156 Spiral  - -  - -  
500 0.0597 78.4 0.252611 Saddle - 2 5 7 3 8 2  - 4 1 7 5 1  

+ 248749 + 42284 

500 - -  - -  0.675012 Spiral - -  - -  
362 0.0011 2.7 0.252505 Saddle - 5 5 7 1 5  - 2 2 4  

+ 4 8 3 1 2  + 196 

362 - -  - -  0.675178 Spiral - -  - -  
506 0.0009 3.6 0.252507 Saddle  - 2 0 1 6 7 9  - 3 8 1  

+ 176320 + 337 

506 - -  - -  0.675175 Spiral - -  - -  
2500 0.8638 415.8 0.252726 Saddle  - 1247230 - 9 3 2 7 9 7  

+ 1214912 +9 6 3 2 1 5  

2500 - -  - -  0.674833 Spiral  - -  - -  
764 0.0013 I0 . I  0.252518 Saddle - 1475292 - 2 0 2 0  

+ 1341486 + 1868 

764 - -  - -  0.675159 Spiral  - -  - -  
2600 0.8681 432.9 0.252767 Saddle - 6 2 3 0 6 4 8  - 1014057 

+6069525  + 1047036 

2600 - -  - -  0.674769 Spiral - -  - -  
1092 0.0002 28.8 0.252546 Saddle - 8 4 8 4 4 6 2  - 10612 

+ 7965449 + 10220 

1092 - -  - -  0.675114 Spiral - -  - -  
2700 0.8862 438.8 0.252809 Saddle  - 2 4 5 8 9 5 6 0  - 1052294 

+ 23949028 + 1085698 
2700 - -  - -  0.674703 Spiral  - -  - -  
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of the singular points near z, and z,, respectively. It is seen that the former always turned out to 
be a saddle, whereas the latter was a spiral. This was done in the interest of saving computing time, 
even though it is realized that points with equal values of  P** and h0 correspond to different values 
of P0--not computed for the 18 listed cases. However, the dryness fraction x** was listed for all 
saddle points. Here it is necessary to remember that no trajectory passes through a spiral point; 
hence no values of the dryness fraction or velocity were assigned to them. As is usual in 
steam-turbine practice, the dryness fraction is the local mass ratio of vapor to the sum of vapor 
and liquid. 

Complete calculations were executed for 

(a) P0 = 0.09 MPa, h0 = 500 kJ/kg, 

(b) P0 = 1.5 MPa, h0 = 1000 kJ/kg. 

The resulting portraits projected into the P, z plane are shown in figures 13 and 14. In both cases 
a saddle point S~ is followed by a spiral S=. In this projection, the singular points lie at the 
intersection of two curves labeled A = 0 and Ne = 0. The former is the locus of all turning points 
for the given h0. The latter is the projection of the loci ~ and ~2 where both A = 0 and Ne = 0. 
The insensitivity of  the location of the singular-point cross sections to the thermodynamic state 
appears clearly. In particular, we find that: 

p** p** 
in case (a), = -  = 0.704; 

P0 P0 

p** p** 
in case (b), = -  = 0.700. 

P0 P0 

Trajectories 1-3 have been obtained by reverse and forward integration, as the case may be, the 
first directions being determined along the eigenvectors v~ and v2. Trajectory 4 starts with a 
supercritical inlet condition, and is of no interest in this paper. 

The trajectories in area A all pass through regular points and correspond to physically acceptable 
flows. The curves with turning points in area B do not correspond to physically acceptable 
solutions, unless truncation of the nozzle ahead of z~ is contemplated. Trajectory 1-2 corresponds 
to the highest back-pressure P '  at which the flow has become choked. Trajectory 1-3 determines 

Np=O Np=O 

OI l- v, / v A / 

0.08 p" I 4 

o , 2  

O0 02 04 06 08 
z,m 04 

Figure  13. Categor ies o f  t ra jector ies;  P0 = 0.09 MPa ,  
ho = 500 IO/kg. A = 0 denotes the locus of turning o 2 
points; Np ffi 0 denotes the locus Np = 0; A, all subcritical 
trajectories; B, impossible trajectories in the given 
nozzle; C, solutions of model equations do not give 
physically acceptable solutions; D, solutions of model 
equations do not give physically acceptable solutions to 
problem analyzed in this paper; 1-2, choked flow with 
all velocities in the subscritical region; 1-3, choked flow 
with transition from subscritical to supercritical flow; Sin, 

saddle point; $2, spiral point. 

ip =0 / V2 Np:O D, 

,S 2 

J t i t I Or6 t 0o8 0 0 2  0 4  
z~m 

Figure 14. Categories of trajectories: P0--1.5MPa, 
h0 = 1000 kJ/kg. Notation as in figure 13. 

M F. 13/4==-F 
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the second back-pressure P" at which choked flow represents a solution of [31 a-e]. Area C contains 
trajectories with turning points, one of  which is shown. Such trajectories are solutions of [31a--c], 
but are deprived of  physical significance in the present context. It is clear that trajectories which 
emanate from St and branch out from trajectory 3, ending with back-pressure P" < Pa < P', are 
physically possible, but they would not be solutions of [31a--c]. On the basis of experimental 
observations it can be asserted that the flow along these trajectories must occur with increased 
entropy production compared to that built into the original model. This may be caused by shock 
waves, separation and other observable dissipative mechanisms. For pressures Ps < P", the flow 
follows the trajectory 1-3. 

We have disregarded the trajectories in the supercritical area D as lying outside the area of 
interest of this paper. 

In summary, we can make the following statements regarding flows with decreasing back- 
pressure P~. 

P '  < Pa < Po (area A): 

Pa=P':  

P" < Pa < P' (area C): 

pa=p":  

0 < Pa < P": 

flows with decreasing mass flow rate rh; trajectories possess 
physical significance and are obtained numerically without 
difficulty; all states are suberitical~ 
first onset of choking; trajectories 1 and 2 require special 
treatment in computer program. 
trajectories which are mathematical solutions of  the adop- 
ted model do not constitute physically acceptable solutions. 
second onset of choking with subcritical branch 1 and 
supercritical branch 3; special treatment of numerical 
scheme required. 
flow occurs along trajectory 1-3; mathematical solutions in 
area D do not constitute physical solutions of  our problem. 

As far as inlet conditions are concerned, the analysis shows that in the prescribed circumstances 
this nozzle cannot develop pressure P < /5  at the inlet. In our examples, 

(a)/5 = 0.0889 MPa, (b) i s = 1.489 MPa. 

15. CONICAL NOZZLES AND C Y L I N D R I C A L  CHANNELS 

Nozzles whose profiles contain a conical divergent portion or a conical convergent as well as 
a divergent portion have been used in experimental research because they are comparatively easy 
to manufacture. They also deserve attention from the computational point of view because for them 
D' = K is a constant. Nozzles consisting of two cones with the throat at their juncture, with or 
without a fillet of  small radius (e.g. R6ocreux 1974; Saha et al. 1982) present particular difficulties, 
because the function D'(z) is not smooth and changes sign at the throat. We shall not consider 
such eases in this paper and only discuss smooth nozzles with a conical divergent portion, as shown 
in figure 15. We assume that the saddle point happens to be located in the conical section 
downstream from the fillet, i.e. with 

D' = K = 2 C J ( h o -  h) (>0)  [38] 

in [36b]. Reference to [36a] shows that the equation has now ceased to contain any expficit functions 
ofz. The situation that has arisen in the phase space ~(P,  h, z) is depicted in figure 16. The surfaces 
Nh----Are = A = 0 intersect along a line Y" which is parallel to the z-axis. Consequently, the state 
h**, P** is uniquely determined and is the same for all possible locations of  the critical cross 
section; it follows as a solution of  the simultaneous equations [34] and [36a] with D'  ffi K.  

In order to determine the location z** it is now necessary to integrate forward, and to bracket 
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z ho:cOnst 

Figure 15. Smooth nozzle with a conical divergent 
portion and a saddle point located in it. 

Figure 16. Phase space for the conically diverging 
portion of  a nozzle. 

I 
z z;" 

Figure 17. Bracketing the location of  the critical cross 
section with the conical divergent portion. 
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Figure 18. Set o f  nozzles with varying conical div~gent 
portions, and movement of  the critical cross section, 

depending on the angle of  the cone. 

the critical solution with two close surves (figure 17), one with a minimum in P, h, and the other 
a turning point.t  The analytically calculated values of  h** and P** serve as a very useful check. 

It should be noted that in the case of  a cylindrical pipe of  constant cross section, D' vanishes 
in [36a]. Consequently, Nh is always negative and cannot vanish. In this case, as shown previously 
(Bilicki & Kestin 1983), all trajectories acquire turning points and the singular point recedes to 
z ~ oo. With D" = K, as in a cone, N, can become equal to zero if D' is just large enough. This 
suggests that varying the angle of  divergence = of  a conical channel must ultimately have a large 
effect on the locations z~'* of  the critical cross section. This will occur near that value of  D" which 
just makes it possible for Nh to vanish. Such a situation is illustrated in figure 18 which depicts 

tNote that the appearance of  two such curves with only sfightly different initial conditions does not signify that the 
computer program diverges. 
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the location z**/zt as a function of the angle 0t and opening (Dex - D,)/ze. The location becomes 
very sensitive to the angle below about ct = 7 °. 
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A P P E N D I X  A 

Locus 6 ~ as the Common Intersection of  A = 0 with all N, = 0 

Each of  the conditions N~(z ,o**)=O defines a manifold 5"., which we assume to be 
n-dimensional. The set of  singular points of [1] consists of the common intersection of the n + 1 
manifolds #r, Zt . . . . .  Y.,. We now assert that, under the assumption of nondegeneracy, the set 6 ° 
lies at the intersection of just two manifolds, namely 3-(A = 0) and any one of the manifolds Y~, 
say Zt. All other manifolds Y~,(i # 1) automatically intersect ~" along re. This is equivalent to 
saying that substitution of the condition A = 0 into the n conditions iV, = 0 results in a set of n 
linearly dependent equations. 

The preceding assertions can be proved by recalling that in our case rank A,j = n - 1, which 
means that of the n n-column vectors (i = 1 . . . . .  n), 

{A,.l . . . . .  A,} are linearly dependent 

and 

{Aa . . . . .  Am} are linearly independent. 

The additional condition Nl = 0 means that the n n-column vectors 

{b~, Aa . . . . .  A~} are also linearly dependent. 

The linear dependence in [A. 1]--[A.3] 
the property that 

A,l(ff**)+ ~ /~jA,j(a'**) ---- 0, i = 1 . . . . .  n, 
J - 2  

and 

[A.l] 

[A.2] 

[A.3] 

means that there exist numbers/z 2 . . . . .  #n and v 2 . . . .  , vn with 

[A.4] 

bi(z**, a**) + ~ vjA~j(¢**) = 0, i = 1 . . . . .  n. [A.5] 
j - 2  

Multiplying [A.4] by ve # 0 and [A.5] by/~e # 0 and subtracting, we obtain the result that 

veAsl(a**) - I~tbi(z**, ¢**) + ~ (l~jvt - Izevj) Ao(¢**) = 0. 
j = 2  

[A.6] 

We note that the last term in [A.6] vanishes for j = d. This proves that the n-column vectors in 
which A o occurs in each column, with the exception of column d which contains b~, are linearly 
dependent. These linearly dependent vectors are of the form {Ai l  . . . . .  At, t - I ,  bi, A i.t+l . . . . .  ,4~ }. 
Hence N~ = 0 with A = 0 implies that all Nt = 0, for d = 2 . . . . .  n, on ~ .  
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A P P E N D I X  B 

Transverse Intersection 
We may assume that the set of 5" of nondegenerate singular points, being the intersection of 

two n-dimensional manifolds, will have the structure of an (n - l)-dimensional manifold. One may 
test the validity of this assumption in the vicinity of any fixed, nondegenerate singular point (z**, 
a**) by the following procedure. We compute the gradients of the functions A(o) and NI (z, a) at 
(z**, o**), viz. 

h =  

[~NI(z**,o**)] 
o 

, k ~ . . . . . . . .  . 

OA(o**) 0 ~  L OUx(z**,~ o**)J 
[B.I] 

When h # 0, then ,Y- is, in the vicinity of (z**, ~r**), an n-dimensional surface which is normal to 
h at (z**, or**). Similarly, when k # 0, then Y.~ is, in the vicinity of (z**, ~r**), and n-dimensional 
surface which is normal to k at (z**,o**). If, further, k and h are linearly independent (i.e. 
noncollinear), then 5 and ~"~'1 intersect transversely in the vicinity of (z**,o**) into a smooth 
( n -  l)-dimensional manifold 5P on which (z**, a**) lies. The ( n -  l)-dimensional hyperplane 
tangent on 5~ at (z**, o **) is the orthogonal complement of the two-dimensional subspace spanned 
by h and k, i.e. a vector ~, is tangent on 5" at (z**, o**) if and only if it is orthogonal to both 
h and k (figure B 1). 

A P P E N D I X  C 

Jacobian Matrix e~ 
We propose to show that n - 1 eigenvalues of the matrix e~ must vanish. To this end we 

approach the singular point (z**, o**) along a curve given by the parametric equations z = z(z), 
o = o(~) and embedded in ~ .  Here r is a parameter measured along curve z(z) in 5~, e.g. its arc 

Z 

k ¢ 

o- 

Figure B1. The vectors h and k in the phase space. 
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length. Since A = 0 and N~ = 0 in 5,', we note that 

A{ t t (Q}=0 ,  N,{z(Q, t t (z)}=O, i = l  . . . . .  n. [C.1] 

As [z(0), i t (0 ) ] -  (z**, o**), we can write the direction of an arbitrary vector l' tangential to the 
curve at the singular point by the components 

= {~(0), o(0)}, [C.21 

(the dot denotes t~/dr). The formal derivatives of [C.11 give 

0 = A ( ~ ) =  
~A(o**) 

j=l ~ dj(0) = e~p?~ [C.3] 

and 

3Nt(z**, ¢**) n N,(z**, o**) 
0 = N,{z(0),~(0)} = Oz ~(0)+ ~=1= t3g, d,(0) = e,p),p, i = 1 . . . .  ,n .  [C.4] 

The preceding relations demonstrate that the directional derivatives ~(~) and Nt(z) appear in the 
form of the product of  matrix e~p and the tangent vector ~, i.e. in the form 

e~B? ~ = 0, at = 0, 1 . . . .  , n. [C.5] 

Since 1' is an arbitrary vector lying in the (n - l)-dimensional manifold 5 ~, it follows that zero is 
an eigenvalue ofe~B with multiplicity n - 1. The matrix e~B is a square (n + l) x (n + l) matrix and 
has, in addition, two other, presumably nonzero, eigenvalues ),~ # ~2. 

A P P E N D I X  D 

Center Manifold Theorem 

The "center manifold theorem" (Guckenheimer & Holmes 1983) states that the eigenspaces q, 
of the linearized system x~ = e~x~ corresponding to eigenvalues with nonzero real parts are tangent 
to trajectories of the full nonlinear system [1] at the singular point. 


